Consonant recognition with continuous-state hidden Markov models and perceptually-motivated features

نویسندگان

  • Philip Weber
  • Colin J. Champion
  • S. M. Houghton
  • Peter Jancovic
  • Martin J. Russell
چکیده

Research into human perception of consonants has identified phoneme-specific perceptual cues. It has also been shown that the characteristics of the speech signal most useful for recognition depend on the specific speech sound. Typical ASR features and recognisers however neither vary with the type of sound nor relate directly to perceptual cues. We investigate classification and decoding of non-sonorant consonants using basic perceptually-motivated features – phoneme durations and energy in a few broad spectral bands. Our classification results using simple classifiers suggest that features optimal for human perception also perform best for machine classification. We show how characteristics of the models learned relate to knowledge of human speech perception. Recognition results using a continuous-state HMM (CSHMM) show accuracy similar to a discrete-state HMM with similar assumptions. We conclude by outlining how the CSHMM provides a mechanism to make use of other perceptually-important features by integration with similar models for recognition of voiced sounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perceptual compensation for the effects of reverberation on consonant identification: A comparison of human and machine performance

Human listeners are able to perceptually compensate for the effects of reverberation on speech recognition, by exploiting information gleaned from prior exposure to the reverberant environment. We present a computer model of perceptual compensation for reverberation implemented within a hidden Markov model speech recogniser, in which different reverberant speech models are selected depending on...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Speech Recognition Using Monophone and Triphone Based Continuous Density Hidden Markov Models

Speech Recognition is a process of transcribing speech to text. Phoneme based modeling is used where in each phoneme is represented by Continuous Density Hidden Markov Model. Mel Frequency Cepstral Coefficients (MFCC) are extracted from speech signal, delta and double-delta features representing the temporal rate of change of features are added which considerably improves the recognition accura...

متن کامل

Application of continuous state Hidden Markov Models to a classical problem in speech recognition

This paper describes an optimal algorithm using continuous state Hidden Markov Models for solving the HMS decoding problem, which is the problem of recovering an underlying sequence of phonetic units from measurements of smoothly varying acoustic features, thus inverting the speech generation process described by Holmes, Mattingly and Shearme in a well known paper (Speech synthesis by rule, Lan...

متن کامل

N-channel hidden Markov models for combined stressed speech classification and recognition

Robust speech recognition systems must address variations due to perceptually induced stress in order to maintain acceptable levels of performance in adverse conditions. One approach for addressing these variations is to utilize front-end stress classification to direct a stress dependent recognition algorithm which separately models each speech production domain. This study proposes a new appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015